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ABSTRACT

Half the vector sum of a convex body and its polar reciprocal with respect
to a umit sphere E contains E. A consequence of this is: The mixed area of
a plane convex body and its polar reciprocal with respect to E is minimi~
zed by circles concentric with E.

The arithmetic mean (K + K)/2 of a convex body K and its polar reciprocal
R, with respect to a unit sphere E centered at an interior point of K,contains E.
From this we shall obtain the following result.

THEOREM. The mixed area A(K, K) of a plane convex body and its polar
reciprocal satisfies A(K,K)Z n, with equality if and only if K is a circle
concentric with E.

To prove that
6} (K+ K)22E

let Q be the center of E, x the boundary point of K in the direction v from Q.
The polar plane of x has a normal distance from Q equal to 1/[ x | where || x |
is the distance from Q to x. The normal distance to the support plane of K per-
pendicular to vis greater than or equal to | x |. Hence, if H and H are the support
functions of K and K with respect to Q, we have, for the support function of
(K + K)/2:

@ HE) + B2 2 o] (x| + 1/]x[)/2 2 ]

and the right hand side of (2) is the support function of E.
There is equality in (1) if and only if | x| = 1; therefore in the inclusion (1),
with AK for K and (AK)~ = K/A for K where A > 0:

3 (AK + K/)2 2 E

there is equality if and only if AK is the unit sphere E.
The mixed volume V(K4,...,K,) is monotonic increasing in each convex
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body K;, cf. [1]. We write W,(K) for the mixed volume with K, =...=K,=E
and the remaining K set equal to K. From (3) we have for p<gq:

WK + R/21/D) = WK + K/41/2),

with equality if and only if AK = E, because in the case at hand the monotonicity
is known to be strict, cf. [1], p. 43.
In the plane this yields

@ 2A([AK + R/2]/2) = K([AK + R/A]/2) 2 2=
since in this case
Wo(K) = A(K), Wi(K) = L(K)/2, W(K)=n

where A and Lare the area and perimeter.
From Steiner’s formula we have

min A([AK + K/1]/2) = min[A%A(K) + 24(K, K) + A(K)/A*]/4
2 (A(K, R)+ J[A(K)A(B)])/2,
and
min ([AK + R/2]/2) = min[AL(K) + L(R)/A]/2 2 VLK) LB,

the minima being taken over A > 0. By Minkowski’s inequality:

) AKK, R) = JTAK) A(B)].
We replace the terms in (4) by these minima and use (5) to get
6) 24K, R) 2 J[LKK)L(R)] 2 2=.

From the cases of equality in (3), we see that there is equality in (6) if and only
if K =rE for some r > 0.

In a similar fashion, in Euclidean 3-space we have, for the mixed surface area
and total mean curvature

4nS(K, R) 2 JIMK)M(R)] = 16n2,

with equality if and only if K = rE for some r > 0.
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