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ABSTRACT 
Half the vector sum of  a convex body and its polar reciprocal with respect 
to a unit sphere E contains E. A consequence of this is: Themixed area of 
a plane convex body and its polar reciprocal with respect to E is minimi- 
zed by circles concentric with E. 

The arithmetic mean (K + /~)/2 of  a convex body K and its polar reciprocal 

/~, with respect to a unit sphere E centered at an interior point of  K, contains E. 
From this we shall obtain the following result. 

THEOREM. The mixed area A(K, R) of a plane convex body and its polar 
reciprocal satisfies A(K, I~)~ re, with equality if and only if K is a circle 
concentric with E. 

To prove that 

(1) (K + g ) / 2  __ E 

let Q be the center of  E, x the boundary point  of  K in the direction v from Q. 

The polar plane of  x has a normal distance from Q equal to 1/~ x 11 where II x II 
is the distance from Q to x. The normal distance to the support  plane of  K per- 

pendicular to v is greater than or equal to 11 x II Hence, i f  n and H are the support 
functions of  K and /~ with respect to Q, we have, for the support function of  
(K + /~)/2: 

(2) (HKv) + >__ llvll (ltxll + 1/ l lx l l ) /2  Ilvtl 
and the right hand side of (2) is the support function of  E. 

There is equality in (1) if and only if II xll -- 1; therefore in the inclusion (1), 
with 2K for K and (;tK)" = /~/2 for R where ;t > 0: 

(3) (;K + /~/2)/2 _ E 

there is equality if  and only if 2K is the unit sphere E. 

The mixed volume V(K1 ..... K,)  is monotonic increasing in each convex 
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body K ,  of. [1]. We write Wp(K) for the mixed volume with KI . . . . .  Kp = E 
and the remaining Ks set equal to K. From (3) we have for p < q : 

Wp([aK + /~/~]/2) >= W.([2K + X/a]/2), 

with equality if and only if 2K = E, because in the ease at hand the monotonicity 
is known to be strict, of. [1], p. 43. 

In the plane this yields 

(4) 2A([2K + i¢/2]/2) ~ L([AK +/~/2] /2)  ~ 27r 

since in this case 

We(K) = A(K), WI(K) = L(K)/2, 

where A and L are the area and perimeter. 
From Steiner's formula we have 

W2(K) = 

rain A([2K + ~7/2]/2) = min[A2A(K) + 2A(K, 1~) + A(~)/22]/4 

>- (A(K, 2~) + ~/[A(K) A(g)])/2, 

and 

min L([2K +/~/2] /2)  = min [2L(K) + L(£) /2] /2  __> ~/[L(K)L(i~)], 

the minima being taken over 2 > 0. By Minkowski's inequality: 

(5) A(K, i~) ~_ ~I[A(K)A( I~)]. 

We replace the terms in (4) by these minima and use (5) to get 

(6) 2 A(K, 1~) ~_ ~/[L(K) L(J¢)] _~ 2n. 

From the cases of equality in (3), we see that there is equality in (6) if and only 
if K = rE for some r > 0. 

In a similar fashion, in Euclidean 3-space we have, for the mixed surface area 
and total mean curvature 

4~S(K, 1¢) > ~I[M(K)M(I~)] > 16n2, 

with equality if and only if K = rE for some r > O. 
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